Toolbox

v The Oliver Twins’ sketches
for Super Robin Hood'’s
background graphics.

30 / wfmag.cc

Squeezing the NES

How the Oliver Twins managed to fit Super

Robin Hood onto a 64kB NES cartridge

AUTHOR
PHILIP AND ANDREW OLIVER

e came late to the development
of NES games, having decided
to write Fantastic Dizzy in early

\AJ
vv 1990. We stayed longer on
8-bit computers than other

developers, due to the success we were having
with the Simulator and Dizzy series. We had a
slick pipeline and tools, and could design and
produce games quickly across the Spectrum and
Amstrad, which then got ported to C64, Atari ST,
and Amiga.

We'd resisted change because it meant we'd
have to learn new computer architectures,
68000 assembler, then recode all our engine,

FF e

=H '_ _],-.
=
8|

3 E
ER=
@ @ |
HEE
| 1 ’T =
1 FHEHE
| 1) BB
| N X D
| B € BB e ‘
EEEE
S EEE]
A [B
bdl @ |

Y

v

The Oliver Twins have been making games since the
early eighties, and can now be found at their new
consultancy firm, Game Dragons. gamedragons.com

(@)

Download
the code

from GitHub:
wfmag.cc/
wfmag34

tools, and get hit with large bills for all the
artwork and music. It would have been a
massive investment of time and money, and
we could see that many developers were
struggling to make money on the ST and Amiga
due to the high costs of development and the
ease with which players were able to pirate the
finished games.

When we visited the Consumer Electronics
Show in January 1990, we saw the success
Nintendo were having, that they had eliminated
piracy and were selling games at high prices
and in vast numbers. We looked at these games
and were confident we could do something
of similar quality - and in the same amount of
development time - to our current titles: that
is, about four to six weeks each. The NES was
based on the 8-bit 6502 chip, which we already
knew from the Commodore 64, and we knew
we'd still be able to do a lot of the graphics
ourselves if we needed to.

Our first game for the NES ended up being
Fantastic Dizzy, released in 1991, which was a
mash-up of ideas from our first three Dizzy titles
in one large game, with a few other subgames
added for maximum value. It took about
nine months to write, and used an expensive
128kB cartridge. Codemasters had signed
a distribution deal with Camerica in Canada
to sell NES titles in the US and Canada; they
needed a catalogue of games, so we needed
to start producing them faster and cheaper. A
lot of our time was spent on learning how the
console worked and producing the toolchain,
standard library routines, and the overall
development environment.

O = N W H U1 O N

Our development environment consisted of
two 8086 PCs, both fitted with floppy drives and
20MB hard drives. These had PDS (Programmer
Development System) cards installed, cabled
to Codemasters NES Development Boards,
that in turn were cabled to retail NES consoles.
Each PC had a text editor and 6502 compiler.
We'd back up and transfer data between the
PCs via 5% inch floppy disks. The PCs had

“Our development
environment consisted
of two 8086 PCs”

monochrome monitors, while the NES consoles
were connected to colour TVs - one was PAL
and the other NTSC, to ensure compatibility
with televisions in other parts of the world.

In addition, we had an Amiga 500 with a colour
monitor running Deluxe Paint Ill, a package we
used for creating all the graphics. The whole
set up cost almost £10,000. In today's money,
that's around £20,000 - and as self-employed
developers, we had to pay this up front and
recoup the cost via royalties, so it was a

huge investment.

For our second NES game, we decided to
revisit the first title we made for Codemasters,
Super Robin Hood, first released for the Amstrad
CPCin 1985. The game had a fundamentally
good concept and didn't need a huge story
with lots of scripts and puzzles; it could make

Toolbox

» Figure 1: The Super Robin
Hood castle map, which
amounts to around 65 screens.

Supen Rl ol @ e R Tonas o
M TENDD

l | < Anearly sketch of
® e the map, with the
A player's path and
items carefully
plotted out.

THE TITLE
SCREEN

Once the overall game was
complete, we saw how much
memory was left and allocated
this to the title screen. This
picture only used about 400
unique characters, which took
around 8kB memory, with the

30 high, plus the colour palette
colour information. We also us
a trick so that halfway down th

screen an interrupt swapped

Background Character set.

wfmag.cc

character map being 32 wide by

ed
e

the Sprite Character set with the

31

Toolbox

> Figure 2: A few of Robin
Hood'’s sprite animations.
These were flipped when
Robin Hood moved left.

INSIDE THE NES

First hitting Japan in 1983,

the Nintendo Entertainment
System was Nintendo’s debut
games console. Inside the grey
box, there was a MOS 6502
CPU, similar to the Commodore
64. It contained just 2kB of
onboard RAM; game cartridges
could increase this, but doing
so made them more expensive
to produce. Cartridge sizes
ranged from 8kB to 1MB, but
128kB to 384kB were the

most common. There was

an additional 2kB video RAM,
256 bytes of ‘object attribute
memory’ to store the positions,
colours, and tile indices of up
to 64 8x8 pixel sprites on the
screen, and 28 bytes to allow
selection of background and
sprite colours. The standard
display resolution was 256
horizontal pixels by 240 vertical
pixels, and could display up

to 24 colours at once from a
palette of 52. The NES could
display 32 x 30 background
characters with up to 64
overlaid sprites. The graphics
for the characters were held in
the game cartridge, either fixed
in ROM or reprogrammable in
more expensive RAM.

32 /| wfmag.cc

good use of a set of solid routines and game
mechanics developed for Dizzy, and we'd be able
to produce it much faster and for a cheaper
64kB cartridge. We also relished the idea of
making scrolling levels, as they'd feel so much
nicer than the original, flick-screen game.

THE GAME

Super Robin Hood was a typical platformer, but
its English folklore theme meant we had a built-
in plot (Robin rescuing Maid Marion) and a great
projectile weapon: a bow and arrow was much
better for an 8-bit game than a gun, since the
arrows can move slowly and are more visible as
a result. When the enemies use these, it also
makes sense in terms of gameplay, since there’s
time for the player to dodge the arrows. (Bows
and arrows don't tend to attract the negative
political baggage that guns tend to come

with, either.)

The game was set in a medieval castle filled
with guards and other obstacles to navigate.
The adventure element was made more
interesting by the inclusion of keys to open new
routes, ensuring it wasn't a linear game, and
took some memory and navigation to work out
the best routes. The castle itself was a side-on
maze, with each floor distinguished by its own
theme: the lowest floor consisted of chain-lined
dungeons and rocky walls, and as you rose up
through the floors, you passed through feast
halls, living rooms, bedchambers, and ultimately
the ramparted roofline and towers, where Maid
Marion awaited rescue.

TECHNICAL DESIGN
The game was written to fit on a 64kB ROM
cartridge, which also had 8kB RAM for redefining

the background character and sprite graphics.
To put that in perspective, Super Mario Bros. was
a 40kB cartridge: 32kB for the game and data,
with 8kB ROM for the background and sprite
character sets.

The NES's architecture forces some great
memory-saving restrictions. First, it allows up
to 256 four colour, 8x8 pixel characters for the
backgrounds, and 256 characters for sprites.
Each character set adds up to just 4kB in total,
which is really efficient on memory - by contrast,
a single iPhone App Icon amounts to about 43kB
(120%120 pixels in 24-bit colour).

When printing a background character, the
NES also uses different predefined palettes
- 48 in total. We typically chose black for the
background, and then three shades of a colour
for each of the palettes. The background was
character mapped (32 x 30 characters) and also
had the ability to scroll - which kind of made us
wish we'd had a C64 back in the day, as this is
such a powerful feature.

CASTLE BACKGROUNDS

When the player started the game, the
background level graphics needed to be
transferred into the background character set.
We could load in different graphic sets from the
main game ROM, which was great for changing
background level graphics between floors.

We decided on eight floors in the castle, but
only three unique background character sets,
as we had a couple of floors that used similar
environment styles and used colour palette
changes to make them look more varied:

Floors 0, 1, and 2 - Dungeons - all used the
same character set.

ey Y S e e e e
IEEEEEEEEEEER

A Super Robin Hood saved memory by reusing some background sprites
with different colour palettes, like the stone blocks you can see here.

- Halls and Bedrooms -
share the same character set.

- Ramparts, End Screen,
Font - all in the third character set.

With each background character set taking
4kB, this amounted to 12kB for all background
graphics. The rippling lava in the deepest parts
of the dungeons was achieved by redefining
the lava character between a set of different
characters, each with ripples in different
positions, rather than changing the characters
on the screen.

The background maps for all the levels took a
large chunk of memory by themselves. The full
castle map took up around 65 screens (see
Figure 1). With each screen being 32 characters
wide and 30 characters
high, this translated into
62kB of memory if it wasn't
optimised or compressed
in some way. We started by
mapping everything with
256 unique 2x2 character blocks, reducing
this to almost a quarter. In fact, the map only
had to be 14 blocks high, as TVs used to lose
a little around the edges and you could set
edge characters to black, creating a slight black
border top and bottom. This meant the map
data took 14.5kB of the ROM (65 screens x 16
vertical strips x 14 blocks per strip).

FOREGROUND GRAPHICS
Hardware sprites were similar to background
characters, except colour 0 in each palette
was always transparent, and you could display
up to 64 sprites anywhere on the screen
simultaneously. These would display on top

of the background without taking up any

“The background
maps took up a large
chunk of memory”

processing power - this was a big step up

from pixel-mapped computers like the BBC,
Spectrum, and Amstrad, where displaying sprites
took most of the available processor time. The
sprite graphics were largely taken up by Robin
Hood's animations - all the guards and other
enemies were static, so they only took up 4kB

of memory.

The NES's hardware did come with one minor
restriction: it couldn't display more than eight
sprites on a single horizontal raster line. We
did our best to design around this restriction
by alternating the order we displayed the
sprites - this meant that, when more than
eight sprites needed to be displayed on a line,
you'd see some flickering of the first and last
sprites. In Super Robin Hood, this led to some
arrows flickering as they
approached Robin. We did
our best to position guards
and other enemies on
different levels to reduce
this. Vertical adversaries like
spiders and chains with spiked balls used lots of
sprites; these were in vertical lines and so didn't
cause such issues, but it was challenging coming
up with lots of vertically based threats that made
for good gameplay.

The Robin Hood animation should have
used around 12 sprites (typically 3 characters
wide by 4 deep) per frame, and there were 74
frames of animation, which without optimisation
would have required a whopping total of 888
characters. Obviously, we didn't use this amount;
to reduce it, we developed a special tool that
helped locate duplicate characters, allowing us
to move the sprites to create blanks, and look
for opportunities to mirror existing characters
- for when Robin Hood was moving left and

Toolbox

]
il
=
n
]
n
-
n
-
n
R

TECH NOIR

Fun fact: The Apple II, which
used the Motorola 6502
processor, was featured in
James Cameron’s 1984 film,
The Terminator. It clearly shows
that Arnold Schwarzenegger’s
T-101 ran on 6502 code, taken
from the Apple Il manual.

4 Games In One
Canridge

163 covimnsters (GariERER
~ Due to licensing disputes with
Nintendo, Super Robin Hood didn't
emerge until 1993, on the Quattro
Adventure four-in-one cartridge.

wfmag.cc | 33

Toolbox

A Super Robin Hood'’s sprite
set, which largely comprised
Robin Hood's animations.
The rest was given over to
assorted enemies, barrels,
and other objects.

right, say. This was another of the NES's great
hardware features. By doing this, we were able
to create all 74 frames of animation from just
120 unique sprite characters (see Figure 2).

AUDIO

The music and sound effects were developed by
Allister Brimble to meet the brief we delivered.
We weren't musicians, and always outsourced
all our audio. The music driver was written by
Gavin Raeburn, and was the driver we used on
all our Codemasters NES games. There were
ten soundtracks and around 20 sound effects.
Altogether, the data and code took only 4kB.

BANK SWITCHING
The ROM size of Super Robin Hood was 64kB,
which seems like the obvious convenient
‘addressable’ size of memory given that two 8-bit
registers (16-bit addressing) can index memory
up to 64kB.

The console reserves the first 32kB for its local
RAM for variables, character data, and screen

v Figure 3: The Super

memory, but, this is not 32kB of usable memory

Robin Hood cartridge’s
memory map.
DUNGEONS HALLS & BEDROOMS RAMPARTS & FONT
Bank Switching Memory Each Bank Contains 2 Contains
Top 16k Can switch Background Char Sets [4k] Background char set
ROM Sprite Char Set [4k] 585* Strips of Map Data 2 level strips
[16k] Background char sets ~36 Screens [8k] Title & End Screen Data
level data Indexed in 256, so 2-3 strips Char set for Title & Font
Music track data Music Track Data Music Track Data
DATA BANK B $C000 DATA BANK C DATA BANK D
Object Data
Positions and timings of
Guards, spiders, mace etc
ROM SA000
[16k] All Program Code
8k
Stays premanant -
R RaticA ssiiio 64KB ROM on Cartridge
Screen Character Map
SRAM :
HeaAndr Seo0 8KB Video RAM on Console
Expansion RAM Space
[on cartridge]
Character Set Data [4k]
Sprite Set Data [4k] $4020
321/0 Regist $4000
Not Usable
52008 .
& 1/0 Regirs $2000 8KB RAM on Cartridge
Mirrors.
$0000-507FF
(Not Usable) S0800
RAM Usable RAM
(1280 Bytes) $0300
Sprite Positions $0200
Stack 50100
Fato Fas %5000 2KB RAM on Console

34 /| wfmag.cc

(see the memory map in Figure 3). The 64kB
cartridge ROM is split into four banks of 16kB
each; the first remains permanently mapped
at $8000. Banks B, C, and D can switch, but are
only accessible when resident at $C000.

PROGRAMMING

The NES used the 8-bit 6502 chipset, which
predates the Z80 chipset from the ZX Spectrum
and Amstrad. It only has 56 instructions, and
when you remove the useless ones like BCD
(Binary Coded Decimal), it leaves less than 50
instructions and feels far more limited than the
Z80. Fundamentally, you have three registers:

A (main Accumulator)

X & Y (for indexing and arithmetic).

S (stack pointer - note it's only 8-bit, which
means you can't nest routines too deeply)

P (Processor status - a set of flags).

8 bits = 1 Byte = 0-255 number possible. In HEX,
this is $00-$FF.

The processor makes good use of ‘paging’ its
memory. That is, you have a total addressable
memory up to 64kB using 16-bit addressing (two
bytes combined - high and low). But if you use a
high byte to address each ‘page’ (256 bytes) then
you can index into the next 255 bytes, only using
the 8-bit X or Y registers.

RESERVED PAGES

#00 "Zero Page": General variable workspace.
Anything here only uses 1-byte indexing, which
is shorter and faster. We put all variables for
the entire game in these 256 bytes. Remember,
since the game is stored on a cartridge, it's
entirely ROM (Read Only Memory).

#01 ‘Stack’: The 'S’ register stores 2-byte
addressed return locations' here, when it
enters subroutines.

A simple piece of code will look like this:

Add7to16bitVariable ; Routine Label
CLC ; CLear the Carry flag.
LDA $23 ; LoaD Accumulator, getting

the low byte of a variable in Zero Page
[usually given a name]

ADC #$07
be set if result > 255 # Means Number, $

; ADd a Constant 7, carry will

means HEX

STA $23 ; STore Accumulator - saving

14e70

-~
WEE | I

)N R RN
NEEEEENEEEEE
nnrrjr“rrr. VISR

NEE| |[EmE

A The score was placed high on the screen so as to avoid a clash with other sprites on the same horizontal line.

the low byte

LDA $24 ; LoaD Accumulator - getting
the high byte

ADC #$00 ; ADd with Carry - adding zero
to add any carry that might have been set
above

STA $24 ; STore Accumulator - saving
the high byte

You can also see a longer code snippet in
Figure 4. With such basic instructions, each
piece of code might look long-winded at first
glance. Bear in mind though, that most lines of
code only take up one or two bytes, so while

it looks long, it takes up very little memory. If
you're interested in learning more about 6502

“The NES used the 8-bit
6502 chipset, which
predates the ZX Spectrum
and Amstrad”

assembly, you can find more information at
wfmag.cc/6502, and you can even take a look
through Super Robin Hood's complete source
code at wfmag.cc/wfmag34.

RELEASE

Sadly, Super Robin Hood was released over a year
late, and amid some thorny distribution issues

- essentially, Codemasters didn't have official
Nintendo approval for publishing games on

the NES. Eventually, Super Robin Hood was sold
as part of a collection of games called Quattro
Adventures, released in 1993, and it didn't sell
very well or earn us much money as a result.
Still, we were proud of what we created, and
hired some developers to convert the game to
the Atari ST and Commodore Amiga, and even to

the ZX Spectrum and Amstrad CPCs, where
it was retitled Robin Hood: Legend Quest.

Writing code in 6502, on the NES in such
small amounts of memory was a challenge,
but also hugely satisfying. We're still proud
of the final game to this day; it was a fine
example of elegant design, code, and art all
coming together beautifully to create a fun,
slick adventure.

LDA mappointer

ADD timesiatablelo,x
5TA address

LOA mappointersl
ADC timeslitablahi X
STA addresssl

LSRR

LSR

Lem

TAY

ROL temp

LOA (address) .,y
=TA blockfound
STX blockx

STY Blocky

LDOA Bleckfound
RTS

BEG 13
0 LDA curcentmap
CHP changeblocksmap X
BNE ‘2
LDA blockx
CMP ehangedblocksx , X
BNE 12
LBA blocky
CHP changedblocksy X
BNE 2
LDA changedblocksnew.x
STA Blockround
LDX BLOCKX

RTS

jInstructions and registers in CAPITALS

findblock iA=L Mexh Y=y

STX temp ; store X register to variabie
LSR temp j @lL these Logical Shift Rights & ROLate Rights
ROR ;to divide 18bit number by 18!

LSR temp

ROR

LER tamp

ROR

L3R temp

ROR

TAX jRmslrip %

ROL templ iwhich chr

TVYA jtransfer ¥ to A
L8R sLogical Shift Right - Assumes A wunless ¥ of ¥ in acronum

;@815 Block num

JUSR CheCKChaANgedblOCK ; JUBP SuUbroutine Relative.

- Uses & bit address offset

iUith onluy 3 registers there’s always a Lot of shuffling to maintain registers

;16 Map BLOCKS Can change. Things like doOrs remaining open
jUses B4 Bytes Of the valuable 2K Ranlll

changedblocksmap DEFE 0,0,8,0,0.9.0,0, ; (18] iDefine Bute(s)
changeblocksx DEFS ©,0,0,0,0,0,0,0,; [16]
changeblocksy DEFE 0,0,0,0,0,0,0,0, ; (161
changeblocksnew DEFS 8,0,08,0,0,0,0,08,; [18]1

ChECKChangedblock jgiVen X,y Coords changes blLockfound if 4t is in change table
LOX thangedblLockspointer ;increments sach time & bLOCK i2 changed

RTS jReturn from subroutine
2 DEX jDEcreament X

BNE!1 JUOrKkS LACKMBFdE Through the List of changed blocks
13 LDX blockx

jon reflection this method does mean the routine gets siouwer
ithe further you get through the game.
;% bad problem, bUT NavVer ACLuUBLLY cBuUsad any =lovdown.

Toolbox

v Figure 4: The entire code
base of Super Robin Hood is
8kB. Instructions vary
between 1-3 bytes. So,
assuming an average of 2
bytes, this means there are
around 4000 lines of code
and it really does look like
code, which is how the
publisher got its name:
Codemasters.

wfmag.cc | 35

