
LIFTING THE LID ON VIDEO GAMES

xx

LIFTING THE LID ON VIDEO GAMES

42

ALL FORMATS
116 PAGES MONTHLY

NEW DOOM
The rise of the nineties-

style retro FPS

DO IT YOURSELFCode a block-pushing puzzle game

FLASH GAMESThe fight to preserve browser game history

Tackling industry racism • Ghost of Tsushima • Wholesome video games

Issue 42 £6
wfmag.cc



58 /  wfmag.cc

Squeezing WarGames onto the Sony PlayStation
Toolbox

How the Oliver Twins managed to fit WarGames: 
Defcon 1 onto Sony’s debut console

s Sony entered the console 
market with the PlayStation in 
1995, Hollywood film studios were 
beginning to take video games 
more seriously. Rather than 

license their properties to game companies, as 
they had been doing up to this point, many of 
them started their own interactive divisions to 
produce and publish titles themselves.

Robb Alvey was a former producer at Virgin 
Interactive and had just moved to the film 
studio MGM, and saw the potential of using the 
WarGames film license for a real-time strategy 

game. He was good friends 
with our agent Jacqui Lyons and 
was sent the pitch for a game 
we’d been working on at our 
company, Interactive Studios. 
Called Conquest, it was a space-
based RTS in the vein of the hit 
Command & Conquer. Alvey asked 
if we could make a proposal for 
a ground-based strategy game 
based on WarGames. We loved 
the movie – it was definitely a 
film for computer geeks of the 
eighties – and so we jumped at 
the chance.

Released in 1983 and directed 
by John Badham, WarGames 

Squeezing 
WarGames onto the 
Sony PlayStation

A follows a young hacker who unwittingly accesses 
War Operation Plan Response (WOPR), a United 
States military supercomputer. We took the 
film’s back story as a basis, but moved it slightly 
into the future. In our game, WOPR has taken 
control of factories and created its own arsenal, 
resulting in a war scenario akin to the original 
Terminator movie. MGM liked the premise, and 
saw there was even a possibility of a movie 
sequel based on the idea. They talked to 
Badham, who liked it and said that he’d rework 
the script and wanted to be credited on the 
game. Badham is credited on the game, but we 
never received that reworked script.   

The first version of the game we pitched was 
for PC, with tanks, jeeps, mechs, and troops all 
based on a full grid-based rolling terrain that 
players could zoom, scroll, and rotate around 
with mouse control. Once this got underway, 
MGM asked if we could produce a PlayStation 
version. Clearly this lacked a mouse and 
would be played on CRT TVs with much lower 
resolution and rendering capabilities than a PC, 
and so adapting the concept to a relatively new 
console would prove something of a challenge.

It took a lot of design work and 
experimentation to get the controls of multiple 
units feeling natural with a PlayStation controller. 
While we played with the idea of group selection 
around a cursor, it felt wrong to try and emulate 

 �WarGames: Defcon 1 
emerged for the PlayStation 
and Windows in 1998.

AUTHORS 
PHILIP AND ANDREW OLIVER

The Oliver Twins have been making games since the 
early eighties, and can now be found at their new 
consultancy firm, Game Dragons. gamedragons.com



59wfmag.cc  \  

Squeezing WarGames onto the Sony PlayStation
Toolbox

the PC’s functionality on a console. Instead, 
we arrived at the principle that you controlled 
each unit directly 
until you switched to 
another unit. AI would 
then take over and 
follow the last simple 
command you gave: 
Attack, Retreat, Defend, or Follow. So typically, 
at the start of a game, you’d set a few units on 
attack, a couple on defend, and then jump into 
the driving seat of the lead attack tank. This gave 
us the right balance of console playability and 
strategic gameplay. 

In the next section, Andrew Oliver explains 
how he got to grips with making a 3D game 
for the PlayStation, and cracking WarGames ’ 
tricky AI.

 
GETTING TECHNICAL
The PlayStation was programmed in C. 
SN Systems, a small development business 
comprising just two people, created the 
PlayStation’s programming environment 
using the GNU open-source C compiler for 
Windows 3.1. 

When first programming the PlayStation, 
I was very suspicious of the code that C was 
producing under the hood. I‘d lived a life of 
having to optimise everything, and suddenly I 
was writing in a high-level language – and while 
C is powerful and easy to read, I wasn’t sure it 
was producing the most efficient code. I wrote 
small tests and disassembled the code to see 
what it had produced, and created a document 
for the other programmers of dos and don’ts for  
writing C code. 

Sony had provided lots of demos and libraries. 
These were useful, but when it came to the heart 
of the graphics engine and formats, I looked at 

theirs and then spent time optimising. I replaced 
all of Sony’s libraries except sound and CD 

handling. I wrote the 
main PlayStation game 
engine for WarGames, 
while Ian Bird wrote 
the gameplay and 
missions. John Whigham 

and Richard Hackett wrote the PC version and 
helped massively with my understanding of 3D.

DEVELOPING A 3D ENGINE
I’d been writing code for over ten years by 
the mid-nineties, but all that skill was built 
up in assembly language, and largely for 2D 
games. Sony had mandated that all games on 
the PlayStation were 3D, since this was the  

“Sony had mandated that 
all games on the PlayStation 

were 3D”



�All of WarGames’ 
graphics had to fit 
in the PlayStation’s 
1MB of VRAM.

 �WarGames: Defcon 1 
contained a total of 16 
story-based missions. 

Squeezing WarGames onto the Sony PlayStation
Toolbox



60 /  wfmag.cc

Squeezing WarGames onto the Sony PlayStation
Toolbox

console’s unique selling point. Programming the 
3D was trickier than I thought, as I relied on my 
A-level maths knowledge of matrices and vectors 
to program it. 

The PlayStation was based on 32-bit integer 
maths. I was used to dealing with integers, but 
I’d never had to do 3D transformations of three-
dimensional coordinates, so this presented a 
challenge. I effectively used the top 16-bit as 
my integer and the lower 16-bit as the fraction, 
and this worked well. In fact, I was proud of how 
smoothly the system projected into 3D space, 
especially when compared to a game like Tomb 
Raider, which had very wobbly 3D graphics.

3D MODELS
Inevitably, lots of 3D models had to be created 
for our game. John Whigham wrote a simple 
3D modeller we called JOBE (John’s OBject 
Editor). Having a bespoke editor made our 
artists produce more efficient models – which 
was important, as we’d estimated that we had a 
budget of around 3000 polygons to create each 
frame. This might sound like a lot, but once you 
start creating 3D environments, you get through 
the budget very quickly.

Using my old maths books, I looked up the 
rotation, translation, and scaling of three-
dimensional points and got the results I 
expected. I was soon able to spin a basic 3D 
tank around on the spot – but once the game 
was running, the tank would occasionally 
collapse in on itself. I was convinced it was a 
bug in my code, but it wasn’t: I’d come across a 

maths anomaly called gimbal lock. Eventually, 
I learned that I needed to use an entirely new 
algorithm system called quaternions. That single 
bug probably wasted around a week of my life!

When drawing a 3D object, I assigned a 
radius to each. The code would quickly check 
that the centre of the object plus its radius 
was within the boundaries of the screen. Any 
object that had no polygons on screen was 
discarded immediately.

Another useful piece of optimisation was 
back-face culling. Most game objects are 
hollow models and you only need to see the 
polygons that are facing you; I knew I’d only 
need to display half the polygons, but I wasn’t 
aware of how it was done. I was also worried 
about the extra overhead the checks needed. 
I asked around and discovered it’s actually 
unbelievably simple. Every polygon is a triangle, 
with nodes A, B, C, each with X, Y, Z coordinates. 
The calculation to see which way the polygons 
face is done once they’ve been translated into 
the 2D screen space. If the 2D coordinates of a 
triangle projected on the screen are clockwise, 
then they’re visible; if they’re anti-clockwise, 
they can be discarded. The code then works 
through translating polygons to a 2D projection 
while adding them to the origin of the object 
and checking if it’s on the screen. If it is, then 
it checks to see if the polygon is front-facing 
before adding it to the draw list (see Figure 1). 

RENDERING MODE
Modern games tend to use deferred rendering, 
but the PlayStation used a more rudimentary 
forward rendering system. This meant preparing 
a Z-sorted depth list, then drawing the furthest 
polygon from the camera first, and then drawing 

 �Lead artist Steve Thompson 
working away on WarGames’ 
low-poly units.

 �Figure 1: A diagram 
showing how to calculate 
front-facing polygons.

 �Figure 2: Sony’s tool showed how many 
times each pixel was overdrawn. The 
lighter the pixel, the greater the overdraw.

 �The 1983 film that led to 
WarGames: Defcon 1. 



61wfmag.cc  \  

Squeezing WarGames onto the Sony PlayStation
Toolbox

the polygons nearer the camera on top of it, in 
order. The GPU would draw from the Z-sorted 
depth list, building the screen from the back to 
the front. To optimise the sorting, I pre-sorted 
each object within itself, as these polygons were, 
by their nature, all next to each other within a 
small Z-distance.

It’s a simple process, but it can cause massive 
overdraw. For example, I’d print a large blue 
polygon across the whole screen to represent 
the sky, followed by the 
far landscape which 
would cover much of 
the sky, then coming 
forward I’d print more 
landscapes, buildings, 
and objects, and finally the screen overlays 
(HUD). What occurs is ‘overdraw’, where many 
pixels of the 640×480 pixel screen have been 
overwritten multiple times, which causes the 
game’s frame rate to drop. This is often due to 
the GPU failing to draw all the polygons before 
the next game cycle is ready.

Sony produced a useful analysing tool 
which could snapshot the screen at the end 
of the frame and show how many pixels were 
overdrawn. The lighter the colour of the pixel, 
the more it’s been written to (see Figure 2). 
We’d see what things had been completely 
obscured and come up with techniques to avoid 
this. For example, my landscape routine would 
store the lowest screen coordinate of its further 
edge, so that on the next draw, the sky would 
only print from the top to a few pixels below 
this point. This saved the GPU an expensive full 
screen redraw.

HEIGHT MAP LANDSCAPE
The landscape was created using a simple height 
map system (see Figure 3). The landscape was 
divided into tiles, a little like a chess-board, which 
had an 8-bit indexed ‘tile’ type. I gave every point 
a height, keeping this to 8-bit as this variation 
was ample. If the landscape looked too flat, I’d 
just multiply all points by a constant. Technically, 
these points were the corners of the tiles (their 
nodes); therefore there would be 65×65 nodes. 

This size was awkward 
to store and index, and 
it’s this kind of thing 
that often causes bugs, 
so I just kept to 64×64 
while the far edges (the 

65th position) used the 64th’s height. This was 
generally the sea, which was flat anyway. 

AI AND ROUTE FINDING
An important part of WarGames was 
commanding units: jeeps, armoured personnel 
carriers, tanks, boats, and helicopters. 
Infantry units could also assist, but these 
were controlled by the computer rather than 
the player. Each unit type had its own strengths, 
weaknesses, and navigated the landscape 
differently. The game had to handle direct 
control and AI control of each. 

When playing WarGames, players would start 
with a set of up to eight different units. Players 
would switch between each of the units and 
when in control, could ‘drive’ around with the 
controller. Players also had the ability to set 
a unit’s AI between four basic states: Attack, 
Retreat, Defend, or Follow. As players left  

SHADOWS
Shadows are important in 
games, since they bed objects 
into the world. However, with 
all the units possible on the 
screen, the complicated systems 
employed today were out of 
the question in WarGames. 
I therefore created a single 
polygon texture that could be 
rotated and printed in subtractive 
transparent mode underneath 
each unit, which darkened the 
area. It was simple, cheap on 
the GPU and CPU, and highly 
effective. Then we came across 
the issue of having WOPR units 
that are big mechanical walkers, 
so we created four frames of 
textures for these – effectively 
small GIFs.



�Figure 3: WarGames: 
Defcon 1 used a simple 
height map system to 
create varied terrain.

“We estimated that we had 
a budget of 3000 polygons 

to create each frame”

 �Andrew programming War-
Games back in 1997, when 
he still had most of his hair!



62 /  wfmag.cc

Squeezing WarGames onto the Sony PlayStation
Toolbox

direct control of a unit, it would follow this basic 
command. This was done in a system similar to 
Chess AI, which always fascinated me. 

The system is called Minimax (see Figure 4). 
It takes a single piece, looks at the rules that 
govern it (a bishop can only move diagonally, 
for example), tries every place it’s allowed to 
go, and gives it a score. If it’s left in a position 
of being captured, it’s a low score, and if it’s a 
position of capturing an opponent’s piece then 
it’s a higher score, depending on the value of the 
piece it can take. The algorithm also needs to 
run through every available piece to see if other 
pieces would score higher. If it were to execute 
the move based on the highest scoring position, 
then it would appear to make a sensible move. 
This assumes it’s looking ahead one place. Using 
this system plays a decent game of chess against 
an amateur.

The system can also be adapted to look 
multiple moves ahead and consider the 
opponent’s potential moves. The code’s written 

in a recursive manner, where it not only moves 
every piece and assigns a score, but also 
moves every opponent’s piece between each 
move and calculates those scores too. The 
size of the scoring table and calculations go up 
exponentially, but the algorithm is able to hold 
its own against even the smartest chess player.

I decided to use this system to control units in 
WarGames, since it’s relatively simple but creates 
a smart adversary. Like chess pieces, each unit 
has its movement rules and values for scoring. 
Jeeps move faster than tanks, but can’t go up 
steep inclines and have less armour, so can take 
less damage before they explode.

Each unit would locate a grid space and 
work out possible moves, decide which scored 
best, and then set its sights on moving to that 
position. It would move in the most sensible 
direction to get to its eventual destination. As 
it crossed boundaries between grid spaces, it 
would set its location to that grid space. This 
blocked the space for other units coming into 
the same space and used far fewer calculations 
than adding a separate system for collisions 
between units.

Unlike chess, however, units in WarGames 
used ranged weapons and needed to get into 
a good position where they could fire on the 
enemy. So while the first system was used for 
navigation, a second system checked whether 
the unit could see an enemy unit to shoot at, 
and this added to its AI score. 

After much debugging, I could see from 
the calculations taking place that the AI was 
working, but discovered a problem: in chess, 
the recursive nature of the algorithm means 

THE PREDATOR TANK
Inspired by the 1987 Arnold Schwarzenegger film 
of the same name, the Predator tank had a cloaking 
ability that rendered it almost – but not quite – 
invisible. The effect was created with a small piece 
of code in the texturing mapping routine. When it was 
printing the Predator tank as it tried to get the VRAM 
coordinates for the texture of the tank, I’d pass the 
screen coordinates it was going to print to. Ordinarily, 
that would just print exactly what was already on the 
screen. But I’d add a small offset of up to a few pixels 
based on the depth – applying this meant you could 
see the 3D shape of the tank, and it looked like it was 
slightly glassy as it just distorted the background.

 �Do not underestimate the 
power of PlayStation. Or 
the Oliver Twins.

 �The stealthy Predator tank, 
inspired by a certain 
eighties Arnold 
Schwarzenegger flick.

 �Figure 4: A diagram 
showing how the 
Minimax system 
works out a piece’s 
moves and assigns a 
score to each one.



63wfmag.cc  \  

Squeezing WarGames onto the Sony PlayStation
Toolbox

moves can take several seconds to calculate. 
WarGames was running real time at a constant 
30fps, meaning that a complex recursive route-
finding system would cause the game to stall 
when it did the calculations. I had a solution, 
or I thought I had a solution, 
whereby each frame the game 
would only calculate the AI for 
one unit. So if there were a 
maximum of 32 units in play, 
then every 32 frames, a unit would calculate its 
best destination. Even the fastest of units would 
take more than 32 frames to get to a previously 
desired destination. So this spread the 
calculations out to something more manageable 
for the processor.

In the heat of a battle, however, the AI was 
still slowing down considerably. I therefore took 
a novel approach: when games are locked to 
specific frame rates, you do all the processing 
for that frame, and then you wait for the next 
screen refresh. It was quite common on fairly 
empty screens, with only a couple of units, that 
the game could run every frame (60fps), but it 
would still wait for the second frame refresh 
(30fps). So I wrote a system where, instead of 
just waiting for the next screen refresh, it would 
start calculating the AI movement positions for 
the next units, until the screen refresh time 
arrived and then it would bail out and restart 
after the next frame had been processed. 

Effectively, this processor-hungry routine now 
appeared to take no time off the processing. The 
game suddenly ran very smoothly – in fact, most 
of the time the game ran at 60fps, except when 
there were a lot of explosions, which were much 
slower for the GPU to process. 

While I was pleased by how well the system 
worked, it had a downside. If there were a lot of 
units on the screen, there was little processing 
time left at the end of the main loop, meaning 
the AI didn’t get much time to calculate the units’ 

actions. As the system struggled 
to have enough processing 
time, it decreased the number 
of tiles it looked ahead to, 
down from the maximum of 

five, to help mitigate this problem. However, 
that meant its destination was closer, and if the 
‘action’ was prolonged, the units would reach 
their destinations before a new destination was 
calculated. It would get there and just stop. This 
only happened in prolonged battles with screens 
full of action, so most people wouldn’t notice it. 
I’d like to think that the AI was behaving more 
human-like: that is, in a prolonged, high octane, 
battle scenario, its ability to think straight 
becomes more restricted!

You can now play in a browser right here: 
wfmag.cc/wargames. 

 �The team behind WarGames: Defcon 1 – Interactive 
Studios, later known as Blitz Games.

 �Music and sound effects 
were produced by composer 
Tommy Tallarico (Earth-
worm Jim, MDK).

 �Models ranged from 
simple buildings that 
were as low as ten 
polygons, to tanks and 
vehicles that ranged 
between 50 to 100 
polygons each.

“In the heat of 
battle, the AI was 

still slowing down”


